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a b s t r a c t 

Conventional dictionary learning algorithms suffer from the following problems when ap- 

plied to face recognition. First, since in most face recognition applications there are only 

a limited number of original training samples, it is difficult to obtain a reliable dictionary 

with a large number of atoms from these samples. Second, because the face images of 

the same person vary with facial poses and expressions as well as illumination conditions, 

it is difficult to obtain a robust dictionary for face recognition. Thus, obtaining a robust 

and reliable dictionary is a crucial key to improve the performance of dictionary learn- 

ing algorithms for face recognition. In this paper, we propose a novel dictionary learning 

framework to achieve this. The proposed algorithm framework takes training sample diver- 

sities of the same face image into account and tries to obtain more effective representa- 

tions of face images and a more robust dictionary. It first produces virtual face images and 

then designs an elaborate objective function. Based on this objective function, we obtain 

a mathematically tractable and computationally efficient algorithm to generate a robust 

dictionary. Experimental results demonstrate that the proposed algorithm framework out- 

performs some previous state-of-the-art dictionary learning and sparse coding algorithms 

in face recognition. Moreover, the proposed algorithm framework can also be applied to 

other pattern classification tasks. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Dictionary learning is an important branch of sparse representation, and it is widely used in pattern recognition

[13,47] and image processing [41] . Sparse representation has the key idea that samples can be sparsely represented by a

large number of “atoms”, and it is widely used for face recognition [35,43] . In order to produce competent “atoms”, re-

searchers have proposed various dictionary learning algorithms [5,45] . 

Although dictionary learning has exhibited promising performance in face recognition [4,5,12,44,45] , previous dictionary

learning algorithms suffer from the following problems. First, face recognition is a typical small sample size problem, and

insufficient available samples have severe negative effects on dictionary learning algorithms for face recognition. Actually,
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learning an over-complete dictionary from just a limited number of high-dimensional images is a challenge for all image

classification issues. Second, because the face images of the same person vary with facial poses and expressions as well as

illumination conditions, it is hard to obtain a very robust dictionary for face recognition. For face recognition tasks, even

if the dictionary is not very sensitive to variations in poses, expressions, and illumination conditions, it is able to obtain

relatively stable descriptions of the face image with a high accuracy. Exploring and tackling the above two problems rep-

resent a significant step in the study of dictionary learning for face recognition. In order to achieve robust face recognition

performance via dictionary learning, researchers have proposed novel algorithms with valuable ideas. For example, learning

an “occlusion dictionary” is proposed for better recognition of occluded face images [19,44] . However, it seems that an “oc-

clusion dictionary” is just a special-problem-associated algorithm and cannot perform very well when one is dealing with a

general face recognition issue. Learning a robust dictionary [14] is also very important for other fields such as background

modeling [25] and tracking [34] . In addition, dictionary learning has been applied to a wide array of image-associated tasks

[17,24] . 

This paper proposes a new dictionary learning framework, focusing on enhancing the diversity of training samples of the

same face and obtaining more effective representation of face images. The robust dictionary learning framework designed

in this study is not only applicable to face recognition but can also be applied to other pattern classification tasks. For

face recognition tasks, the proposed algorithm framework achieves robustness by exploiting an elaborated algorithm and by

generating virtual face images that convey new possible poses and illuminations of the face. For other pattern classification

tasks, the designed framework can be applied with either of the two following schemes. (1) Virtual training samples are

first obtained by corrupting original training samples. Then the designed elaborated algorithm is applied to the original and

virtual training samples. (2) The set of original training samples is divided into two, and the designed elaborated algorithm

is applied to these two halves. In other words, the first and second halves are viewed as the original and virtual training

samples, respectively. This scheme may be highly effective when there is a large number of original training samples. In

particular, compared with previous robust dictionary learning algorithms on the basis of l 1 regularization such as those in

[25,34] , the elaborated algorithm designed in this paper has a much lower computational cost. 

The remainder of this paper is organized as follows. Section 2 presents the related work of dictionary learning algo-

rithms. Section 3 provides the proposed algorithm framework. Section 4 supplies the experimental results and analysis.

Section 5 presents the conclusion. 

2. Related work 

Dictionary learning algorithms can be roughly categorized into three types: supervised dictionary learning algorithms, 

semi-supervised dictionary learning algorithms and unsupervised dictionary learning algorithms. 

2.1. Supervised dictionary learning algorithms 

Supervised dictionary learning algorithms are mainly designed based on the reconstruction error and constraint on la-

bels. Dictionaries obtained in a supervised manner usually have strong discriminative power, and they have the potential to

achieve excellent classification performance for classification problems. Studies on supervised dictionary learning have been

extensively performed [7,10,21,31,32,40,42,46] . In order to improve the discriminative ability of the dictionary, the Fisher

discrimination criterion [42] was used to implement the supervision. Moreover, Wang et al. [32] proposed learning class-

specific dictionaries and a global dictionary shared by all categories. However, if the number of categories is large, the global

dictionary may be not suitable for dealing with the complex category correlation. Zhang and Li [45] proposed the discrim-

inative K-SVD algorithm (D-KSVD) based on the classification error. Jiang et al. [10] proposed the label consistent K-SVD

algorithm (LC-KSVD) by constructing the discriminative sparse code error term to improve the discriminative ability of the

learned dictionary. Recently, Cai et al. [5] proposed a support vector-guided dictionary learning algorithm (SVGDL) for image

classification by using the weighted summation of the squared distances between all pairs of coding vectors to construct

the discrimination term. Gu et al. [7] proposed a projective dictionary pair learning algorithm (PDPL) for pattern classifica-

tion. Yang et al. [40] presented a unified model by integrating the analysis-synthesis dictionary learning and universality-

particularity representation. Tang et al. [31] proposed an efficient method to learn a compact and discriminative dictionary

for visual categorization, in which dictionary learning was formulated as a problem of graph partition. When dealing with

high-complexity data due to the use of simple supervised techniques, many dictionary learning algorithms usually suffer

from insufficient discrimination. Quan et al. [21] proposed a supervised dictionary learning algorithm by integrating multi-

ple classifier training into dictionary learning to improve the discrimination. Moreover, in order to transform a dictionary

learned from one visual domain to the other, Zhu and Shao [46] utilized weakly labeled data from other visual domains as

the auxiliary source data for enhancing the original learning system. These supervised dictionary learning algorithms have

achieved excellent performance in classification tasks. However, in many pattern classification problems, accessibility to a

large set of labeled data may not be possible because labeling data is expensive and very time consuming. Thus, insufficient

labeled training data are adverse to supervised dictionary learning algorithms. 
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2.2. Semi-supervised dictionary learning algorithms 

Unlabeled data are easily available and also very useful. This has motivated researchers to design semi-supervised dictio-

nary learning algorithms which exploit unlabeled data, along with labeled data, to build better dictionary for classification

tasks. Shrivastava et al. [26] proposed a semi-supervised dictionary learning algorithm using labeled training samples to

learn specific-class dictionaries, and then used them to predict the label of unlabeled training samples. However, the algo-

rithm did not take into account the underlying geometrical structure of both labeled and unlabeled data, and generally could

not preserve the locality structure and thus the obtained dictionary may not be optimal for classification tasks. In particular,

in the case where the data lies in the nonlinear manifold embedded in a very high-dimensional space [22,28] , the classifi-

cation performance of the above algorithm will be degraded. In order to address this problem, Babagholami-Mohamadabadi

et al. [2] proposed a semi-supervised dictionary learning algorithm by allowing different categories to share a single dic-

tionary. Recently, Wang et al. [33] proposed a semi-supervised dictionary learning algorithm to automatically optimize the

dictionary size. Meanwhile, Jian and Jung [9] proposed a semi-supervised dictionary learning algorithm using the smooth

representation-based label propagation method. 

The main shortcoming of semi-supervised dictionary learning algorithms is that they are usually sensitive to the number

of labeled training samples. 

2.3. Unsupervised dictionary learning algorithms 

Unsupervised dictionary learning algorithms are usually designed based on the reconstruction error of training samples.

One of the most well-known unsupervised dictionary learning algorithms is the K-SVD algorithm [1] . In order to take ad-

vantage of the local geometric structure of training samples, Wang et al. [36] proposed a locality-constrained linear coding

algorithm (LLC) by using distances between the bases (atoms) and training samples to select the k nearest neighbor atoms

for coding, and to set the coding coefficients of other bases to zero. Moreover, Jenatton et al. [11] encoded the dependencies

between atoms of the dictionary by using a tree-structured sparsity. Yu et al. [39] proposed a hierarchical sparse coding

algorithm by using the spatial neighborhood dependency of local patches. However, when the number of training samples

is small, these algorithms are not very suitable for classification tasks. Obtaining virtual training samples is a feasible way

to improve the performance of a classification task [38] . We see that even a simple procedure to obtain virtual training

samples such as the mean-face procedure proposed in [37] may be beneficial for better recognition of faces. 

3. The proposed algorithm framework 

Given a training sample set Y = [ y 1 , …, y N ] ∈ � 

n ×N , let D = [ d 1 , …, d K ] ∈ � 

n ×K be the obtained dictionary matrix, where

each d i represents an atom in dictionary. D , N and K are the numbers of all original training samples and atoms, respectively.

X = [ x 1 , …, x N ] ∈ � 

K ×N is the coding coefficients matrix. We also assume that the training sample set contains all training

samples from C categories. 

3.1. The objective function 

In order to make the learned dictionary robust to variations in facial expressions and poses of the same person, we can

obtain alternative training samples using a special scheme. The set of alternative training samples has the same size and

structure as the set of original training samples. Hereafter the same structure means that the J- th ( J = 1,…, N ) entries of the

set of alternative training samples and set of original training samples have the same label. N is the number of all original

training samples. Therefore, it is reasonable to require that these two sets have the same dictionary. Thus, the proposed

algorithm framework is based on objective function 

min 

D,X 
‖ 

Y − DX ‖ 

2 
2 + α‖ 

Y alter − DX ‖ 

2 
2 + β‖ 

X ‖ 

2 
2 

s.t. ‖ 

d i ‖ 

2 = 1 , i = 1 , · · · , K 

, (1)

where Y alter is the matrix consisting of all alternative training samples. In order to enable the effect of alternative training

samples to be flexible, the proposed algorithm framework introduces parameter α. Under the condition that the original

training samples are more reliable than alternative training samples, α can be set to a positive constant less than 1. Under

the condition that these two kinds of training samples are equally important, α can be set to about 1. β is a regularization

parameter. The following three specific features distinguish our proposed algorithm framework from previous dictionary

learning algorithms. 

(1) The proposed algorithm framework takes training sample diversities of the same face image into account and tries to

obtain more effective representations of face images and a more robust dictionary. 

(2) Instead of using the L0-norm or L1-norm, we use the L2-norm to constrain the coding coefficients in dictionary learn-

ing, and it can obtain a mathematically tractable and computationally efficient algorithm. 
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(3) The designed algorithm is indeed a framework which allows various schemes to produce “alternative training sample”

to be used. It is not only applicable for face recognition but can also be applied to other pattern classification issues.

Actually, once reasonable alternative training samples are available, our framework can be directly applied to other

pattern classification issues. 

The proposed algorithm framework first obtains alternative training samples using a special scheme. For a classification

task with sufficient training samples, we can also simply divide the set of naive training samples into two subsets with the

same size and take the first subset and second subset as the original and virtual training samples, respectively. In this paper,

we use three methods to generate alternative training samples and apply them to the proposed algorithm framework. Be-

cause the proposed algorithm framework requires original face images and alternative training samples to produce the same

dictionary, the algorithm is robust to deformation of face images of the same person. As a result, the proposed dictionary

learning framework is very useful because of its applicability and flexibility to face recognition. The procedures to generate

alternative training samples are presented as follows. 

(1) We treat mirror face images of original training samples as alternative training samples and refer to the corresponding

implementation of the proposed algorithm framework as MFI-DL algorithm. According to Xu et al. [38] , for original

training sample y in the form of face image, its mirror face image is defined as 

y m ( p, q ) = y ( p, Q − q + 1 ) (p = 1 , · · · , P ; q = 1 , · · · , Q ) (2)

where P and Q denote the numbers of rows and columns of the face image matrix, respectively. y ( p , q ) and y m ( p , q )

denote the pixels located in the p -th row and q -th column of y and y m , respectively. 

(2) We use the corrupted images of original training samples as alternative training samples, and the noise images are

produced by applying the Matlab function “imnoise” to the original face images. When we obtain alternative training

samples via corrupting the original face images by using the Gaussian noise, and Salt & Pepper noise, we refer to the

corresponding implementation of the proposed algorithm framework as GN-DL and SPN-DL algorithms, respectively. 

(3) We use the eigenface images of original training samples as alternative training samples and refer to the correspond-

ing implementation of the proposed algorithm framework as EI-DL algorithm. The eigenface images are generated

using the procedure described in [30] . 

3.2. Optimization of the objective function 

In general, a dictionary can be obtained using two kinds of algorithms. The first kind of algorithms updates the atoms one

by one, and the K-SVD algorithm is a typical example of this kind. In the second kind of algorithms, the learned dictionary

is updated as a whole [13] . For our algorithm, when we update one variable, we fix the others. As a result, the objective

function of our proposed algorithm framework has a closed form solution. We present the procedure to obtain the solution

of Eq. (1) as follows. 

If we fix D , we can calculate X using 

X = 

(
D 

T D + αD 

T D + βI 
)−1 (

D 

T Y + αD 

T Y alter 

)
. (3) 

where I is an identity matrix. 

Under the condition that X is fixed, then D can be calculated using 

D = 

(
Y X 

T + αY alter X 

T 
)(

X X 

T + αX X 

T 
)−1 

. (4) 

If dictionary D is initialized, then Eqs. (3) and (4) can be iteratively updated to obtain the ultimate solution. In the

proposed algorithm framework, we use all original training samples and the K-SVD algorithm to obtain initial dictionary D . 

We analyze the computational complexity of the iteration procedure to solve our objective function below. Suppose that

each sample is an n -dimensional column vector. Let Y and D be an n by N matrix and n by K matrix, respectively, and X is a K

by N matrix. The main computations are from the loop procedure in Table 1 . In this procedure, the computational complexity

to update X is O ( K 

2 n ) + O ( K 

3 ) + O ( KNN ) + O ( K 

2 n ). The computational complexity to update D is O ( KnN ) + O ( K 

2 N ) + O ( K 

2 n ). As

a result, the proposed algorithm framework is computationally very efficient. 

3.3. The classification procedure 

Following [20] , we adopt a linear classification procedure as follows. 

First, a classifier f ( X ) can be obtained by determining its model parameters W ∈ � 

C ×K with constraint 

W = min 

W 

�{ H, f (X, W ) } + λ‖ 

W ‖ 

2 
F , (5) 

where H = [ h 1 , …, h n ] ∈ � 

C ×n ( h i = [0, …, 1, …0] T ∈ � 

C ) is the label matrix of Y , and the non-zero position of column vector

indicates the class of training samples. � is the loss function and λ is a regularization parameter. Therefore, based on coding

coefficients matrix X and label matrix H , we calculate classifier parameter matrix W ∈ � 

C ×K by using 

W = H X 

T (X X 

T + I) −1 (6) 



Y. Xu et al. / Information Sciences 375 (2017) 171–182 175 

Table 1 

The proposed algorithm framework. 

Input: Training sample matrix Y (and Y alter ), Parameters α and β , Test sample T , Label matrix H of training sample set Y . 

Output : Dictionary D , Coding coefficients matrix X and representation coefficient V , Label k of test sample T . 

1: Initialization: The K-SVD algorithm is used to obtain initial dictionary D ; 

2: while not converged do 

3: Update X using Eq. (3) . 

4: Update D using Eq. (4) . 

5: end while 

6: calculate W using Eq. (6) 

7: The OMP algorithm is exploited to calculate representation coefficient V of test sample T . 

8: Let g = WV . If k = Max 
j 

( g j ) , then test sample T is assigned to the k -th class. 

Fig. 1. Sample images from the PIE face database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The representation coefficient V ∈ � 

K ×1 of test sample T is obtained by using the orthogonal matching pursuit (OMP)

algorithm [29] . The label vector of test sample T is calculated using g = WV . Let g j denote the j -th entry of g . Suppose that

k = max ( g j ) j , j = 1 , · · · , C, then test sample T is assigned to the k -th class. The proposed algorithm framework is described

in Table 1 . 

4. Experimental results and analysis 

In order to evaluate the performance of our proposed algorithm framework, we compare it with the K-SVD [1] , d -KSVD

[45] , LC-KSVD [10] , SRC [35] , LRC [18] , CRC [48] , LLC [36] , SVGDL [5] , PDPL [7] and DNFC [37] algorithms via experiments on

the CMU PIE face database (PIE) [23] , the Labeled Faces in the Wild (LFW) database [8] , the AR face database (AR) [16] and

the Extended Yale B face database [6] . Moreover, in order to better show the performance of our proposed algorithms, we

also compare our proposed algorithms with the ten comparison algorithms on the Fifteen Scene Category database [15] . 

4.1. Experimental setting 

In this section, we give the experimental details. The mirror images are produced by using the algorithm proposed in

[38] . The noise images are produced by using the Matlab function “imnoise” to impose noise on the original face images.

The first parameter of “imnoise” should be an original face image. If the second parameter of “imnoise” is set to ’Gaussian’

or ’Salt & Pepper’, the Gaussian noise or Salt & Pepper noise will be added to the original image. For the Gaussian noise, the

mean (i.e., the third parameter of “imnoise”) is always set to zero and the standard deviation (i.e., the fourth parameter of

“imnoise”) is set to 0.1. For the Salt & Pepper noise, the density of noise (i.e., the third parameter of “imnoise”) is set to 0.1.

Following [10] , we use sparsity factor ψ =30 in the K-SVD, D-KSVD, and LC-KSVD algorithms as well as our proposed

algorithm framework. Moreover, the LLC algorithm obtains the coding coefficients by using the approximated LLC. Then, the

distances between the test sample and each class are calculated. Thus, the test sample is assigned by using the minimum

distance. In order to make a fair comparison, the number of local bases of the LLC algorithm is identical to sparsity factor ψ .

In the experiments on K-SVD, D-KSVD, and LC-KSVD algorithms and our proposed algorithm framework, a linear classifier

method [20] is used to classify the test samples. 

In addition, there are two parameters in our objective function. We use fixed parameter values α= β = 10 −3 in the ex-

periments on the four face databases. For the Fifteen Scene Category database, α and β are set to 1 and 10 −4 , respectively.

4.2. Experimental results on the PIE face database 

The PIE face database consists of 41,368 front-face images of 68 persons, and the face images of each person are captured

under 13 different poses, 43 different illumination conditions, and 4 different facial expressions. Several sample images from

the PIE face database are shown in Fig. 1 . 

Following [3] , we choose the five near-frontal poses (C05, C07, C09, C27, C29) of each subject and use all the images

under different illumination conditions and facial expressions. Thus we get 170 images for each individual. Every image is

normalized to the size of 32 × 32. We randomly select ten images of each person as training samples (the first five images of

each person are always used, and the other five images of each person are randomly selected from the rest of the images)
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Table 2 

The average recognition rates and computing time for training a dictionary and classify- 

ing a test sample on the PIE face database. 

Algorithm Average recognition rates (%) Training time(s) Testing time(s) 

LRC [18] 61.6 ± 0.021 – 1.45e-2 

CRC [48] 74.1 ± 0.012 – 3.53e-3 

LLC [36] 53.7 ± 0.016 – 2.83e-2 

SRC [35] 72.1 ± 0.008 – 8 .50 

K-SVD [1] 72.0 ± 0.013 8.39 1.32e-3 

D-KSVD [45] 71.9 ± 0.008 235 1.31e-3 

LC-KSVD [10] 72.3 ± 0.009 28.8 1.31e-3 

DNFC [37] 71.4 ± 0.009 – 6.53e-2 

PDPL [7] 77.5 ± 0.011 25.0 0.71e-4 

SVGDL [5] 76.4 ± 0.007 634 0.7e-5 

MFI-DL 77.2 ± 0.010 15.80 1.31e-3 

GN-DL 77.0 ± 0.008 15.80 1.31e-3 

SPN-DL 78.0 ± 0.008 15.80 1.31e-3 

EI-DL 77.8 ± 0.012 15.80 1.31e-3 

Fig. 2. The average recognition rates versus different numbers of atoms on the PIE face database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and use the remaining samples as test samples. The proposed algorithm and ten comparison algorithms are carried out

ten times, and the average recognition rates are reported in Table 2 . Moreover, the average computing times for training a

dictionary and classifying a test sample are also reported in Table 2 . The number in the bracket in Table 2 is the number of

atoms. 

Table 2 shows that the proposed algorithms achieve higher average recognition rates than the ten comparison algorithms

in most cases. In particular, the SPN-DL algorithm achieves the highest average recognition rate. 

In order to further test the proposed algorithms, we also compare the average recognition rates of the D-KSVD, LC-KSVD,

MF-DL, GN-DL, SPN-DL and EI-DL algorithms with different numbers of atoms ( K = 68, 136, …, 476). The experimental results

are shown in Fig. 2 . It shows that the proposed algorithms outperform the D-KSVD and LC-KSVD algorithms. 

Fig. 2 shows that the average recognition rates of the D-KSVD and LC-KSVD algorithms and the proposed algorithms

all increase with the increase in the number of atoms. This is mainly because the reconstruction ability and discriminative

ability of the dictionary improve with the increase of the number of atoms. Thus, better classification performance can be

obtained. 

4.3. Experimental results on the LFW database 

The LFW database contains more than 13,0 0 0 images of faces collected from the web, and all of them labeled with the

name of the person pictured. The main goal is to study the problem of unconstrained face recognition. In the database,

1680 of the persons have two or more distinct photographs. Following [27] , we use a cropped version (LFW crop) of the

Labeled Faces in the Wild (LFW) dataset, which keeps only the center portion of each image (i.e., the face), and almost all of

the background is omitted. The LFW crop face database was created due to concerns about the misuse of the original LFW

dataset, where face matching accuracy can be unrealistically boosted through the use of background parts of images (i.e.

exploitation of possible correlations between faces and backgrounds). For each LFW image, the area inside a fixed bounding

box was extracted. The bounding box was at the same location for all images, with the upper-left and lower-right corners

being (83,92) and (166,175), respectively. The extracted area was then scaled to a size of 64 × 64 pixels. The selection of

bounding box location was based on the positions of 40 randomly selected LFW faces. As the location and size of faces

in the LFW database were determined through the use of an automatic face locator (detector), the cropped faces in the
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Fig. 3. Sample images from the LFW crop database. 

Table 3 

The average recognition rates and computing time for training a dictionary and classifying 

a test sample on the LFW database. 

Algorithm Average recognition rates (%) Training time (s) Testing time (s) 

LRC [18] 20.8 ± 0.011 – 11 .8 

CRC [48] 27.3 ± 0.008 – 6.89e-3 

LLC [36] 21.7 ± 0.013 – 22 .6 

SRC [35] 27.2 ± 0.012 – 561 

K-SVD [1] 17.1 ± 0.032 6.99 1.9e-3 

D-KSVD [45] 23.6 ± 0.015 206 1.8e-3 

LC-KSVD [10] 22.3 ± 0.012 9.61 1.76e-3 

DNFC [37] 25.6 ± 0.015 – 26 .6 

PDPL [7] 26.5 ± 0.007 37.6 1.46e-3 

SVGDL [5] 24.7 ± 0.015 554 2.49e-4 

MFI-DL 27.8 ± 0.014 7.86 1.95e-3 

GN-DL 28.3 ± 0.011 7.86 1.95e-3 

SPN-DL 28.1 ± 0.020 7.86 1.95e-3 

EI-DL 28.4 ± 0.012 7.86 1.95e-3 

Fig. 4. The average recognition rates versus different numbers of atoms on the LFW database. 

 

 

 

 

 

 

 

 

 

 

 

LFW crop database exhibit real-life conditions, including misalignment, scale variations, in-plane as well as out-of-plane

rotations. In this experiments, we select a subset of the LFW crop face database consisting of 1215 images of 86 persons. In

this subset, each person has around 11–20 images. Each image is resized to a 32 × 32 image. Sample images from the LFW

crop database are shown in Fig. 3 . 

We randomly select six images of each person as training samples and take the remaining as test samples. The proposed

algorithm framework and ten comparison algorithms are repeatedly carried out ten times and the average recognition rates

are reported in Table 3 . Moreover, the computing times for training a dictionary and classifying a test sample are also

reported in Table 3 . 

Table 3 shows that the proposed algorithms still achieve higher average recognition rates than the ten comparison algo-

rithms. 

We also compare the average recognition rates of the D-K SVD, LC-K SVD, MFI-DL, GN-DL, SPN-DL and EI-DL algorithms

with different numbers of atoms ( K = 86, 172, 258, 344). The experimental results are presented in Fig. 4 . This shows again

that the proposed algorithms outperform the D-KSVD and LC-KSVD algorithms. 

4.4. Experimental results on the AR face database 

The AR face database contains more than 40 0 0 images of 126 persons. Each person has 26 face images captured in

two sessions, and each face image is captured under various lighting conditions. We use a subset of the AR face database
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Fig. 5. Sample images of one person from the AR face database. The images in the first two lines are captured in Session 1, and images in the last two 

lines are captured in Session 2. 

Table 4 

The average recognition rates and computing time for training a dictionary and classifying 

a test sample on the AR face database. 

Algorithm Average recognition rates (%) Training time (s) Testing time (s) 

LRC [18] 69.7 ± 0.074 – 3.42e-2 

CRC [48] 71.4 ± 0.061 – 7.75e-3 

LLC [36] 71.1 ± 0.060 – 7.71e-2 

SRC [35] 72.2 ± 0.072 – 3 .41 

K-SVD [1] 78.8 ± 0.063 25.9 1.81e-3 

D-KSVD [45] 74.1 ± 0.067 1137 1.63e-3 

LC-KSVD [10] 74.2 ± 0.066 80.9 1.71e-3 

DNFC [37] 77.7 ± 0.064 – 2.21e-1 

PDPL [7] 79.5 ± 0.059 70.3 5.30e-4 

SVGDL [5] 78.0 ± 0.059 2139 3.68e-4 

MFI-DL 79.9 ± 0.062 45.3 1.84e-3 

GN-DL 79.7 ± 0.066 45.3 1.84e-3 

SPN-DL 79.8 ± 0.067 45.3 1.84e-3 

EI-DL 79.6 ± 0.066 45.3 1.84e-3 

Fig. 6. The average recognition rates versus different numbers of atoms on the AR face database. 

 

 

 

 

 

 

 

 

 

 

 

consisting of 3120 images from 120 persons (65 men and 55 women). The resolution of the AR images is 40 × 50. For each

person, 12 face images with sunglasses and scarves were captured in two sessions. The images of one person from the AR

face database are shown in Fig. 5 . 

We choose seven neutral face images captured in session 1 and one occluded face image of each person from the used

subset as training samples (the first face image of each person with sunglasses captured in sessions 1 and 2 are not used as

training samples). Thus, sixteen images of each person (seven neutral images at session 2 plus the remaining nine occluded

images) are used for testing. Since each person has ten available occluded face images, the experiments are carried out ten

times, and the average recognition rates are given in Table 4 . The computing times for training a dictionary and classifying

a test sample are also reported in Table 4 . 

As shown in Table 4 , the average recognition rates of the proposed algorithms are higher than those of the other algo-

rithms when the number of atoms is 960. In particular, the MFI-DL algorithm achieves the highest average recognition rate

among all algorithms. 

In order to further test the proposed algorithm framework, we also compare the average recognition rates of the d -KSVD,

LC-KSVD, MFI-DL, GN-DL, SPN-DL and EI-DL algorithms with different numbers of atoms ( K = 120, 240, …, 600, 720). The

experimental results are shown in Fig. 6 . 
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Fig. 7. Sample images from the Extended Yale B face database. 

Table 5 

The average recognition rates and computing time for training a dictionary and classify- 

ing a test sample on the Extended Yale B face database. 

Algorithm Average recognition rates (%) Training time(s) Testing time(s) 

LRC [18] 92.4 ± 0.008 – 1.65e-2 

CRC [48] 95.0 ± 0.009 – 2.79e-3 

LLC [36] 88.9 ± 0.010 – 3.04e-2 

SRC [35] 95.3 ± 0.005 – 1 .84 

K-SVD [1] 94.0 ± 0.005 10.1 1.59e-3 

D-KSVD [45] 94.3 ± 0.005 398 1.316e-3 

LC-KSVD [10] 92.7 ± 0.008 34.9 1.43e-3 

DNFC [37] 92.5 ± 0.010 – 1.07e-1 

PDPL [7] 96.0 ± 0.005 45.8 4.30e-4 

SVGDL [5] 93.8 ± 0.006 843 1.52e-4 

MFI-DL 95.9 ± 0.007 33.1 1.05e-3 

GN-DL 96.0 ± 0.006 33.1 1.05e-3 

SPN-DL 96.2 ± 0.009 33.1 1.05e-3 

EI-DL 96.2 ± 0.004 33.1 1.05e-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that with the increase in the number of atoms, the average recognition rates of the d -K SVD and LC-K SVD algo-

rithms and the proposed algorithms all increase. Moreover, it is obvious that in terms of the average recognition rates, the

proposed algorithms outperform the d -KSVD and LC-KSVD algorithms. 

4.5. Experimental results on the Extended Yale B face database 

The Extended Yale B face database contain 2414 front-face images of 38 persons, and the face images are obtained under

various illumination conditions and expressions. Every person has 59–64 images and each image is normalized to the size

of 32 × 32. Several sample images from the Extended Yale B face database are shown in Fig. 7 . 

We randomly select twenty images of each person (the first five images of each person are always used, and the other

fifteen images of each person are randomly selected from the rest of the images) to form the training samples and use the

remaining samples as test samples. We repeatedly run the proposed algorithms and ten comparison algorithms ten times

and report the average recognition rates in Table 5 . The computing times for training a dictionary and classifying a test

sample are also reported in Table 5 . When the number of atoms is 760, the proposed algorithms still achieve a higher

average recognition rate than the ten comparison algorithms. 

In order to further evaluate the performance of the proposed algorithms, we also compare the average recognition rates

of the d -KSVD, LC-KSVD, MFI-DL, GN-DL, SPN-DL and EI-DL algorithms with different numbers of atoms ( K = 38, 76, …, 722,

760). The experimental results are shown in Fig. 8 . When the number of atoms is larger than 532, the average recognition

rates of the proposed algorithms are higher than those of the d -KSVD and LC-KSVD algorithms. 

4.6. Experimental results on the Fifteen Scene Category database 

For a classification task with sufficient training samples, we can also simply divide the set of naive training samples into

two subsets with the same size and take the first subset and second subset as original and alternative training samples,

respectively. In order to show the classification performance of our proposed algorithms, we use the same setting as the

LC-KSVD algorithm on the Fifteen Scene Category database. Actually, the Fifteen Scene Category is a database of fifteen

natural scene categories, and it contains fifteen scenes such as bedroom, kitchen and country scenes. Each category has 200

to 400 images, and the average image size is about 250 × 300 pixels. Several sample images from the Fifteen Scene Category

database are shown in Fig. 9 . 

The spatial pyramid feature of the Fifteen Scene Category is extracted by using a four-level spatial pyramid and a SIFT-

descriptor codebook with a size of 200. The final spatial pyramid features are reduced to 30 0 0-dimension features using

the PCA method. We randomly select 100 images per category as training samples, and the rest as testing samples. For the

training samples, we use the first 50 images per category as original training samples, and the rest as alternative training
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Fig. 8. The average recognition rates versus different numbers of atoms on the Extended Yale B face database. 

Fig. 9. Sample images from five categories in the Fifteen Scene Category database. 

Table 6 

The average recognition rates on the Fifteen Scene Category 

database. 

Algorithm Average recognition rates (%) 

LRC [18] 96 .1 

CRC [48] 95 .8 

LLC [36] 89 .2 

SRC [35] 91 .8 

K-SVD [1] 86 .7 

D-KSVD [45] 89 .1 

LC-KSVD [10] 92 .9 

DNFC [37] 95 .9 

PDPL [7] 97 .0 

SVGDL [5] 95 .4 

Our proposed algorithm 97 .3 

 

 

 

 

 

 

 

 

 

 

 

samples. In this experiment, the number of atoms is 450. The experimental results are shown in Table 6 . It can be seen that

our proposed algorithms can achieve higher average recognition rates than the ten comparison algorithms. 

4.7. Analysis of experimental results 

We summarize the experimental results below. 

(1) When the numbers of atoms and original training samples are the same, Tables 2–6 show that the proposed algorithm

framework achieves higher average recognition rates than the SRC, LRC, LLC, DNFC and CRC algorithms, which directly

use only original training samples to perform pattern recognition. This demonstrates that the obtained dictionaries

have more discriminative ability than the original training samples. 

(2) When the numbers of atoms and original training samples are the same, Tables 2–6 show that the average recognition

rate of the proposed algorithm framework is superior to those of the K-SVD, D-K SVD and LC-K SVD algorithms. This

demonstrates that the proposed algorithm framework has more power discriminative ability than the K-SVD, D-KSVD

and LC-KSVD algorithms, although they are all dictionary learning algorithms. 

(3) When the number of atoms is equal to that of training samples, the average recognition rate of the proposed algo-

rithm framework is superior to those of two compared specific-class dictionary learning algorithms, the PDPL and

SVGDL algorithms. This is mainly because all atoms of the specific-class dictionaries have more redundancy which

may degrade the classification performance. Our proposed algorithm framework combines the original training sam- 

ples and alternative training samples to learn a dictionary for all the classes. It can overcome the above shortcoming

to some extent. 
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(4) When we integrate the mirror face images, the face images corrupted by the Gaussian noise, Salt &Pepper noise and

eigenface images of the original training samples to our proposed algorithm framework, Tables 2–5 show that the

average recognition rates of our proposed algorithm framework have little difference for the same database. 

(5) Figs. 2, 4 and 6 show that the average recognition rates of the proposed algorithm framework are superior to those

of the D-KSVD and LC-KSVD algorithms. In particular, both the D-KSVD and LC-KSVD algorithms are supervised algo-

rithms and use the label information in the dictionary learning process. Our proposed algorithm framework uses only

the original training samples to generate virtual face images, noised face images or eigenface images for improving

the robustness of the dictionary. However, when the number of atoms is smaller than 228, Fig. 8 shows that the

average recognition rates of the proposed algorithm framework are lower than that of the LC-KSVD algorithm. When

the number of atoms is smaller than 456, Fig. 8 shows that the average recognition rates of the proposed algorithm

framework are lower than that of the D-KSVD algorithm. This partly shows that the proposed algorithm framework

can outperform conventional dictionary learning algorithms under the condition of a small scale training sample set

and a large scale dictionary, but in other cases it may not perform so well. 

(6) Tables 2–5 show that our proposed algorithm framework requires less training time than the D-KSVD, LC-KSVD, PDPL

and SVGDL algorithms, and takes slightly more training time than the K-SVD algorithm. The K-SVD, D-KSVD and

LC-KSVD algorithms and our proposed algorithms have shorter testing times than those of the SRC, LRC, CNRC and

LLC algorithms. Since the K-SVD, D-K SVD and LC-K SVD algorithms and our own proposed algorithms use the same

linear classification method, the testing time was nearly equal. Moreover, the testing time of our proposed algorithm

framework is slightly longer than that of the PDPL and SVGDL algorithms. 

5. Conclusions and discussions 

In this paper, a novel idea for robust and mathematically tractable dictionary learning algorithm is proposed. Moreover,

the paper designs a framework that allows various schemes to produce “alternative training samples” to be used. Extensive

experiments demonstrate that the proposed algorithm framework is robust and outperforms some previous state-of-the-art

dictionary learning and sparse coding algorithms in classification accuracy. 

Another advantage of the proposed algorithm framework is that it is not only applicable for face recognition but also

can be applied to other pattern classification issues. Actually, once reasonable alternative training samples are available,

our framework can be directly applied to other pattern classification issues. For example, the following scheme can also

be applied to general pattern classification issues: alternative training samples are first obtained by corrupting the original

training samples. Then the proposed algorithm is applied to the original and alternative training samples. As presented

earlier, among potential possible schemes, one very simple scheme is to divide the set of original training samples into two

groups and to regard one group as original training samples and the other group as alternative training samples. It seems

that this scheme is highly suitable for cases where there is a large number of original training samples. 
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